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Selection of length distributions in living polymers
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The steady state distribution of polymer (or micelle) lengths under nonequilbrium conditions in which
monomers are continuously extracted from a system is studied. The dynamical equations describing this
process exhibit a one-parameter family of steady state distributions. A study of the dynamical equations
suggests that they exhibit either a linear marginal or nonlinear marginal selection, depending on the con-
trol parameters of the model. The selection is explicitly demonstrated for a simplified linear version of

the dynamical equations.

PACS number(s): 05.70.Ln, 47.20.Ky

Selection of patterns in systems far from thermal equi-
librium has been extensively studied in recent years.
Most studies have been concerned with a situation where
a stable state (usually nonuniform) of a dissipative system
propagates into an initially (usually uniform) unstable re-
gion [1-7]. Experimentally, this may be realized when a
stable system is abruptly brought above its stability limit.
A small perturbation may then locally drive the system
into a new stable state, which eventually spreads into the
rest of the space. Commonly studied systems are
Rayleigh-Benard convection cells, Taylor instabilities,
chemical reactions with diffusion, solidification fronts,
and others. Usually, these systems possess a band of
linearly stable nonuniform states. Questions which one
would like to answer are the nature of the nonuniform
pattern of the resulting stable state, the mechanism by
which this pattern is selected, and the speed with which
the front separating the two phases is moving.

A simple model for which the selection mechanism can
be demonstrated was analyzed by Aronson and Wein-
berger [1]. They considered a nonlinear diffusion equa-
tion of the form

3¢ _ 3%
iR ACIR (1

where f(¢) is chosen such that (1) has a stable uniform
state at, say, ¢ =1 and an unstable state at ¢=0. A front
separating the ¢ =1 state from the ¢ =0 one propagates
into the unstable phase with a velocity v. Steady state
front solutions of Eq. (1) with any velocity v may be
found. However, it has been shown that for a large class
of functions f(¢) and for physically relevant (namely, lo-
calized) initial conditions, a particular velocity v is select-
ed. Depending on the function f (¢), the selected velocity
may either correspond to a marginally stable fixed point
or to a different fixed point which is referred to as case II
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(or nonlinear) marginal stability [1,3,6]. These results
were subsequently generalized and applied to more com-
plicated situations in which the stable state is nonuni-
form.

In the present work we consider a different class of sys-
tems in which selection may take place. Here we do not
study front propagation into an unstable phase, but rath-
er the steady state distribution of certain systems away
from thermal equilibrium. Since these systems are locally
stable one may, in principle, study the effect of random
noise on the selection mechanism in this type of system.
This class may also provide a simple example in which
both marginal stability and case II marginal stability may
take place. We consider a system of aggregates (say, po-
lymers or micelles) each composed of n basic units. Let
¢, be the number of n-mers in the system. Under equilib-
rium conditions the system reaches a well defined length
distribution ¢,,. We now drive the system out of equilibri-
um by pulling out monomers (or small size molecules) at
some given rate. This could be achieved experimentally,
say, by providing a surface on which monomers could be
adsorbed, thus leaving the system. Clearly, under these
conditions the c,’s decrease with time, and the system
eventually vanishes. However, one may look at the con-
centration of n-mers x,, =c,, /¢, with

x>
c= Yy nc, ,

n=1

and ask whether these quantities reach a well defined lim-
it for large time z. We show that under the nonequilibri-
um conditions specified above, the system has a one pa-
rameter family of linearly stable steady state distributions
x,. We then consider the selection mechanism by which
a particular distribution is selected. The system is found
to exhibit either a marginal stability or nonmarginal sta-
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bility selection, depending on the parameters which
define its dynamics. The time evolution of these systems
is similar to that of two dimensional soap froth, which
has recently been studied in detail [8]. Soap froth (and
other cellular structures such as polycrystalline films) are
composed of n =3 sided cells which display dynamics
where n =3,4,5 sided cells tend to decrease in size with
time and eventually disappear. A selection mechanism
governing the long time evolution of these systems has re-
cently been discussed [9]. In the following we introduce a
model for the dynamics of interacting polymers and
demonstrate that it has a one parameter family of fixed
point distributions. The dynamics of the model is stud-
ied numerically, and the selection mechanisms are exam-
ined. A simplified linear model is then considered. The
model is exactly soluble, and the selection mechanism can
be demonstrated analytically. The mathematical details
of this analysis are given in the Appendix.

We now introduce a model for the dynamics of aggre-
gates (such as polymers or micelles). For simplicity, it is
assumed that the interaction between the various n-mers
takes place via an association-dissociation process in
which an n-mer absorbs or emits a single monomer and
becomes an (n +1) or (n—1)-mer, respectively. The
equations which govern this process take the form

——=—kx; ¥ c,+tk3 c,—ac,,

dt n=1 n=2

dc, —
7=kxl<cl/2_C2)+k(C3_C2/2) ’ (2)
dc, —
-Et—=kx,(c,,_1—c,,)+k(c,,+1—c,,) forn=3.

Here k is the dissociation rate, kx, is the association rate
between an n-mer and a monomer, and a is the rate at
which monomers are pulled out of the system. For sim-
plicity we assume that k and k are independent of n.
Note that the equation for ¢, is slightly different from
those for c,, n 2 3. First, the rate at which two mono-
mers combine to yield a dimer is kx; /2, and not kx,. In
addition, a dissociation process in a dimer may take place
at a single bond rather than two (those close to the two
edges) for n > 3. The dissociation rate is thus k /2 rather
than k. Summing Egs. (2) one finds

% =—ac,;, (3)
which gives the rate at which the number of units in the
system decreases in time. System (2) is equivalent to the
following equations for the concentrations x,,:

dxl w _® )

——=—kx; ¥ x,+tk Y x,—ax,+axi,

dt n=1 n=2

dx, —
—gt—=kx1(xl/2—x2)+k(x3—x2/2)+axlx2 , (4)
dx, —
7=kx1(x,,_1—x,,)+k(x,,+1—x,,)+ax,x,,

forn=3.

This is a set of nonlinear equations with nonlocal interac-
tions, where the “head” of the distribution, x,, directly
interacts with its “tail,” x,, for arbitrarily large n. The
x, distribution corresponding to the fixed points of these
equations together with Eq. (3) yield the long time
behavior of ¢,. Note that system (4) preserves the nor-
malization condition

0

> nx,=1. (5)

More precisely, summing Eqs. (4) gives

o

=]
— 3 nx,=ax, |3 nx,—1
dtn=1

n=1

By examining Egs. (4) one finds that in general they do
not have just one fixed point, but rather a one parameter
family of fixed point distributions, x,. To see that this
indeed is the case, one first makes an arbitrary choice for
x; and x,. Then the second equation of system (4) deter-
mines x;. In a similar way we can successively solve the
remaining equations, obtaining x, for arbitrary n > 3.
The two free parameters x; and x, may now be varied so
as to satisfy the equation for x, [or, equivalently, the nor-
malization condition (5)], leaving one free parameter. As
long as the x,’s obtained by this procedure are non-
negative, the resulting distribution is physically relevant.
These distributions may, for example, be parametrized by
xy.

To evaluate the fixed point distributions one notes that,
for a given x,;, Eq. (4) for n =3 is a second order
difference equation with constant coefficients. Thus it has
a solution of the form

x,=AA"24+BA?, n22, (6)
where A, are the roots of the characteristic equation
kA*—(k+kx,—ax,)A+kx,=0. @)

Here A and B are parameters which are determined by
the first two equations in (4),

(k —a)x}+ax,
N k—kx,
A[kA_—(k/2+kx,—ax;)]

+BkA,—(k/2+kx,—ax,)]=—kx2/2 .

A B

’

(®)

Solving Eq. (8) for 4 and B one obtains a fixed point dis-
tribution for any x,. However, for the distribution to be
physical, all x,’s have to be non-negative. This is the
case provided (a) the roots A4 are real with [A_| <A, <1,
(b) A +B =0, and (c) B=0. The first condition ensures
that the solution is not oscillating but purely exponential-
ly decaying near infinity. The second condition is just
x, 2 0. The last condition is required since B corresponds
to the dominant part of the solution as n— . A nega-
tive B would imply that x, becomes negative for
sufficiently large n.

Examining Eq. (7) one finds that there is x,, >0 such
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that A, satisfy condition (a) provided 0 <x,; <x,,. Solv-
ing Eq. (8) for 4 and B, one verifies that condition (b) is
always satisfied if 0 <x; <x,,. Regarding condition (c)
two possible types of behavior are found, depending on
the parameters k and a which define the model (the third
parameter k may be set to 1. It determines the time scale
in the problem and does not affect the fixed-point distri-
butions). The parameter B either satisfies B >0 for
0<x,<xy, in which case all fixed points with
0<x, <x, are physical [see Fig. 1(a)], or there exists
0<xg<x) such that B=0 for 0<x, <xg, while B
changes sign at x; =xg [see Fig. 1(b)]. In this case only
the 0<x,<xg are physically relevant. Following the
work of Aronson and Weinberger [1], and Dee, Langer,
and Muller-Krumbhaar [2] one may conjecture that in
the first case the marginal fixed point corresponding to
X, =x,, is selected, in the sense that as long as the initial
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FIG. 1. A cut of the steady state distribution in the (x,,x,)
plane: (a) in the region where a marginal fixed point M is select-
ed and (b) in a region where nonlinear selection (.S) takes place.

length distribution decays sufficiently fast with n, the sys-
tem evolves towards the x, =x,, fixed point. On the oth-
er hand, in the second case (the nonlinear marginal stabil-
ity, or case II) the selected fixed point is the one corre-
sponding to x; =xg. In both cases the selected distribu-
tion corresponds to the physically accessible fixed point
with the fastest decay rate of x, with n. Numerical in-
tegration of Eq. (4) shows that indeed the long time
behavior of the system is governed by either the x; =x,,
or the x, =xg fixed points depending on the behavior of
B. Examples of some distributions are given in Fig. 2.
The (a,k) phase diagram is given in Fig. 3. The phase di-
agram exhibits a line separating two regions, one in
which a marginal selection (M) takes place, and the other
in which nonlinear marginal selection (S) is valid.

In order to study the evolution of this system more
closely, we introduce a continuum model corresponding
to the dynamics of aggregates. Let the length parameter,
n, be replaced by a continuous variable x =0, and denote
the concentration of polymers of length between x and
x +dx at time ¢ by ¢(x,t)dx. The concentration function
¢(x,t) satisfies an equation of the form

d a9’ d
—5?=azag—+algf—+ao¢ , 9

for x >0 where a,, a,, and a, are linear functions of
¢(0,2). Equation (9) should be supplemented by the nor-
malization condition

S xétxndx=1. (10)

This is a nonlinear differential equation with long range
interactions, where ¢(0,?) interacts directly with ¢(x,?)
for any x = 0.

In trying to establish the selection mechanism for Eq.
(9) with (10), one notes that due to the normalization con-
dition, one cannot apply the methods of Aronson and
Weinberger in this case. The reason is that any pair of
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FIG. 2. An example of some steady state distributions. In
this case the x, =x,, fixed point is selected.
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FIG. 3. The (a,k) phase diagram of the model Eq. (4). The
regions M in which marginal selection is valid and S in which

nonlinear marginal selection is valid are marked. k is equal to
1.

non-negative functions ¢(x,t) which satisfy (10) have to
intersect. Therefore one cannot simply apply the posi-
tivity condition which was used for analyzing the dynam-
ics of front propagation governed by equations such as
(1). To proceed, we assume that the coefficients g,
i =0,1,2 are constants independent of ¢(0,¢), and study
the dynamics of the resulting linear equation. This may
be justified by the fact that near the fixed-point distribu-
tion ¢(0,?) is independent of ¢ and may thus be replaced
by a constant. By rescaling ¢ and x in Eq. (9) one may re-
place, say, a, and a, by 1 and consider the dynamics of
the following equation:

3 _¢ , 3¢
3 —an? TCax T4 (11)

where c is a constant, ¢ >0, and x 20. This equation is
supplemented by the normalization condition (10). It has
a one parameter family of fixed-point distributions

d(x)=Ade “*"+Be 7, (12)
where A and B are constants, and a are the roots of the
quadratic equation

a’l—ca+1=0. (13)

This equation has two real roots 0<a_ <a, as long as
¢ >2, and the resulting function ¢ is non-negative provid-
ed 4A+B2>0 and B=0. The normalization condition
(10) implies that A and B are related via

%+%=1_ (14)
a, a-

Therefore, one ends up with a one parameter (say, B)
family of fixed-point distributions of the form of (12).
The question now is which of these distributions is select-
ed by the dynamics of the system. In the following we
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demonstrate that if the initial distribution ¢(x,0) decays
faster than e ~(¢/?”*, the selected fixed point is the one
with B =0, namely, the one with the fastest decay tail.

To study the evolution of ¢(x,?) we consider the devia-
tion 8¢(x,?) from the B =0 fixed point solution (12),

d(x,t)=a%e " +8¢(x,1), (15)

where 8¢(x,?) satisfies the same equation as ¢, namely
Eq. (11), with the normalization condition

J " x8¢(x,0dx =0 . (16)

If the initial distribution ¢(x,0) decays faster than
e /2% 50 does 8¢(x,0) (since a, >c/2). One therefore
has to show that for such initial distributions the function
8¢(x,t) decays to zero in time, thus selecting the B =0
fixed point. Before demonstrating that this indeed is the
case, it is instructive to consider some simple solutions
for 6¢(x,t). Equation (11) together with (16) have solu-
tions of the form

8p(x,0)=e?(Ade T+ Aye ), (17)
where for any given v, a, , (with @, = a,) satisfy
az—ca+1=y B (18)

and A4,/a2+ A,/a3=0 (see Fig. 4). It is clear from Fig.
4 that as long as a¢_ <a,, @, <a,, one has ¥ <0, and the
perturbation decays to zero. On the other hand for
a,>a (or, equivalently, for a; <a_), the time exponent
satisfies ¥ >0 and the perturbation increases to infinity.
This is consistent with the assertion that initial distribu-
tions ¢(x,0) which decay sufficiently fast with x evolve in
time to the B =0 fixed point.

To prove this point in general, one introduces (x,?)
defined by

8¢(x,t)=e_(C/Z)"e“*cz/“'iﬁ(x,t) . (19)

FIG. 4. The dispersion corresponding to the model Eq. (11).
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It satisfies the equation

2
ot 9x?
with
fowxe “le/Dxy(x,t)dx =0 . 21

These equations have a set of eigenfunctions
e *'sin(kx —0,), k>0, (22)

where the 6,’s are chosen such that the integral condi-
tion (21) is satisfied. In the Appendix we use the eigen-
function expansion associated with (22) to show that solu-
tions of (20) and (21) remain bounded as ¢ — . There-
fore, for any initial configuration 8¢(x,0) which decays
faster than e ~(¢/2*, the solution 8¢(x,t) of (11) and (16)
decays to zero at large t. The B =0 fixed point is thus
selected.
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APPENDIX

In this appendix we show that the evolution problem
given by Egs. (20) and (21) has bounded solutions. After
appropriate rescaling we rewrite this problem as

1 Y, _ alet
c? ot Ax?

fowp(x)d},(x)dx =0,

’

(A1)

where p(x)=xe */2. We will first solve this problem in
the Hilbert space ¥, of all square summable functions
¥(x) on the positive half-axis which are orthogonal to p.
Then we will use the result to get the solution on the
space of summable functions. We use Dirac’s bracket no-
tation for the inner product in ¥, i.e.,

(Ylg)= fowlz(x)qa(x)dx )

Using spectral decomposition, the time dependent prob-
lem (A1) reduces to the eigenvalue problem

=k 2¢7k (A2)

in F,. The eigenfunctions are given by

1/2
sin(kx —6,) , (A3)

(pk(x)—

where 6, is determined by the constraint

(ple)=0.

This equation is easily solved; it yields

. -2i6, _ _plk)
pl—k)
where

o . l
ptk)= | “plx)e *dx=——""
po= [ "plxie *dx (1/2+ik)?

is the Fourier transform of p(x). Since the eigenvalue
problem (A2) is not self-adjoint, its eigenfunctions are not
orthogonal. A simple calculation shows that in fact

(pplpp) =8k —k")+g(k)g(k'), (A4)
where
2 11/2 k
(=|=| ———,
g T 1/4+k? "’

satisfies the normalization condition

fo‘xlg(k)lzdk =1. (AS)
A similar calculation gives the completeness relation

S akl@ i =T +1F) A (A6)
with

fO=V2|Z-lle™, (flf)=1.

Inverting the right hand side of Eq. (A6) gives the formu-
la

1= [ "dklg K@il (T =1 fD)

which allows us to expand an arbitrary initial condition
Yy in the eigenbasis. The solution of the initial value
problem (A1) is thus given by

1w,>=f0°°dke'fzk2f|¢k>
XA @l I =L Do) (A7)

Let us estimate the norm of this solution. Using the
orthogonality relation (A4) we obtain

el =< 19
= [ Tdk e 2N @[ — L WS DI 1P

E
+ !fo dk e "*'tg (k)
|2
X @I =21 £ XS D)

Now we apply the Cauchy-Schwarz inequality to the last
integral, and make use of (A5) and the fact that
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—c2k2?

O<e t<1. This gives

P <2 [ "dkl <l (1 =) (Dl -

Finally, we use again the completeness formula (A6) to
get

TARSZ A (A8)

Thus the solutions of (Al) remain bounded in 57p as
t— 0.

It is also possible to obtain a pointwise estimate of
¥,(x) for large t. Indeed from (A7), using (A3), we easily
get

172

Iz/z,(x)ISfowdk|<q9k|(l—%|f>(f|)|¢o
X fowdge_czgz‘.

Using (A3) again we can estimate the inner product in the
last formula, and evaluate the integral. This gives

——== LIl [ TNy
(A9)

where || f||, and ||f||., are the L' and L ® norms of f (x).
Thus, for summable initial conditions, the solution ¥,(x)
vanishes uniformly as  — 0.

The evolution defined by Eq. (A1) for arbitrary func-
tion p is an interesting question in itself. One can show
that as long as p(x) decays to zero slower than x*/* at
x =0 the analysis outlined above holds. We will consider
the general case in a future publication.
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